Friday, 1 September 2017

Swarm Intelligence

Swarm intelligence (SI) originated from the study of colonies, or swarms of social organisms.
Studies of the social behavior of organisms (individuals) in swarms prompted the design of very efficient optimization and clustering algorithms. For example, simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm, and studies of the foraging behavior of ants resulted in ant colony optimization algorithms.
            Particle swarm optimization (PSO) is a stochastic optimization approach, modeled on the social behavior of bird flocks. PSO is a population-based search procedure where the individuals, referred to as particles, are grouped into a swarm. Each particle in the swarm represents a candidate solution to the optimization problem. In a PSO system, each particle is “flown” through the multidimensional search space, adjusting its position in search space according to its own experience and that of neighboring particles. A particle therefore makes use of the best position encountered by itself and the best position of its neighbors to position itself toward an optimum solution. The effect is that particles “fly” toward an optimum, while still searching a wide area around the current best solution. The performance of each particle (i.e. the “closeness” of a particle to the global minimum) is measured according to a predefined fitness function which is related to the problem being solved. Applications of PSO include function approximation, clustering, optimization of mechanical structures, and solving systems of equations.
Studies of ant colonies have contributed in abundance to the set of intelligent algorithms. The modeling of pheromone depositing by ants in their search for the shortest paths to food sources resulted in the development of shortest path optimization algorithms. Other applications of ant colony optimization include routing optimization in telecommunications networks, graph coloring, scheduling and solving the quadratic assignment problem. Studies of the nest building of ants and bees resulted in the development of clustering and structural optimization algorithms.

No comments:

Post a Comment

Featured Post

CBSE 10 Class Foundation Of IT (402) Web Applications : Networking Fundamental

A computer network is a collection of computers and other hardware components interconnected by communication channels (cables or satellites...